The Non-Renewable Spaceship Friday Forum

James A. Rising

Columbia SIPA

October 21, 2011

Overview

Introduction

Calculations

Next Steps

The Inspiration

- Spaceship Earth
- What would you save?
- The need to set aside some non-renewables, in case weak sustainability doesn't suffice.

Framing the Problem

In case of a catastrophe, what is needed to save N people from Earth, and allow them to survive for a period of time, T, using only non-renewable resources?

- Fossil fuels for lift-off
- Metal ores for construction
- Water and air for people and ecosystem
- Nuclear fuel for energy requirements
- Soil and Nutrients for agriculture
- Plants and Animals for self-sustaining ecosystem

The Ship

The Ship

The Ship

Calculations

Total Area, Water Reservoir

- → Ship Dimensions
- \rightarrow Nuclear Fuel
- \rightarrow Total Mass
- \rightarrow Fuels for Lift-off

Nature Area \rightarrow Sustainable Species

http://existencia.org/spaceship/index-old.html

Total Area

Let $\gamma = \frac{A_{nature}}{A}$, the ratio of natural land area to total land area. On Earth, currently $\gamma \approx .6$ (or 1 - (1 - .6)(1 - .71) = .88, including the oceans).

$$A_{ship} = A_{urban} + A_{agriculture} + A_{nature}$$
 $A_{urban} = NA_{home}$ $A_{agriculture} = NA_{agpp}$ $A_{nature} = rac{\gamma}{1-\gamma}A_{agriculture}$

 A_{home} average urban area, per person 4 m^2 arbitrary A_{agpp} agricultural land, per person 500 m^2 see below

```
      vegan diet
      3000 \text{ } t^2
      279 \text{ } m^2
      [?]

      + a few eggs/week
      3500 \text{ } t^2
      325 \text{ } m^2
      ibid

      + one chicken/week
      24300 \text{ } t^2
      2257 \text{ } m^2
      ibid

      + one cow/year
      67300 \text{ } t^2
      6252 \text{ } m^2
      ibid

      current American dietary standards
      1.2 \text{ acres}
      4856 \text{ } m^2
      [?]
```

Water Reservoir

$$R_w = \frac{V_p + V_a}{365.25 \text{ days}} \implies V_w = NR_w T_w$$

V_p	water used by a person directly per year	5 m ³	[?]
V_a	water for agriculture per person per year	$3000 \ m^3$	[?]
T_w	time to process waste water	20 <i>day</i>	[?]
R_w	rate of water use by people	8.22 m^3/day	CALC
V_{u}	total volume of water onboard	$1.645e5 \ m^3$	CALC

Ship Dimensions

Constants: V (volume of core), A (area of spiral) Variables: C (radius of core), R (radius of ship), L (length of spiral), W (width of ship), Θ (angular length of spiral)

$$A = WL$$

$$W = 2R$$

$$V = \pi C^{2}W$$

$$r(\theta) = \frac{H\theta}{2\pi} + C$$

$$R = r(\Theta)$$

$$L = \int_{0}^{\Theta} r(\text{theta})d\theta$$

$$\Rightarrow L = \frac{A\left(\frac{V^{3}}{4AH\pi^{2} + 4V\pi^{2}}\right)^{1/3}\pi}{V}$$

Nuclear Fuel

Consideration:

• Light for entire area, A_{ship} , at sun's intensity:

energy density of nuclear fuel

$$W_{light} = A_{ship}S \implies W_{electricity} = \frac{1}{\epsilon_{light}}A_{ship}S$$

Heat needed to offset losses:

$$rac{dT_{in}}{dt} = -rac{1}{R}A_{outer}(T_{in} - T_{out}) + W_{heat} \implies E_{heat} = rac{1}{R}A_{outer}\Delta T$$

$$m_{nuclear} = \frac{I}{J_{nuclear}} max(W_{electricity}, W_{heat})$$

efficiency of fuel to light conversion arbitrary ϵ_{light} 2.5e3 W/m^2 sun light energy per m^2 heat resistance coefficient $[Km^2/W]$ vacuum ins R

Total Mass

$$\begin{split} m_{ship} = &NM_{person} + A_{nature}(L_{water}D_{water} + C_{biomass}) + \\ &(A_{nature} + A_{agriculture})L_{soil}D_{soil} + \\ &V_{water}D_{water} + \\ &A_{ship}(\max W_{electricity}, W_{heat}) \frac{T}{J_{nuclear}} + \\ &C_{inner}A_{ship}(1 + L_{level}(4L_{room})/(L_{room}^2)) + \\ &C_{outer}(\pi R_{ship}^2 + 2\pi R_{ship}W_{ship}) \end{split}$$

M_{person}	average mass of a person and belongings	100 kg
L_{water}	depth of water table	.5 <i>m</i>
D_{water}	density of water	$1000 \ kg/m^3$
$C_{biomass}$	Average of biomass per area	$10 kg/m^2$

tropical rain forest

 $20 \text{ kgC}/\text{m}^2$

45 - 111 kg/m² Non-Renewable Spaceship

see bel 13 / 22

arbitra arbitra

Fuels for Lift-Off

Space Elevator Calculation, Potential Energy = Chemical Energy:

$$-\int_{\infty}^{R_e} \frac{GM_e m_{ship}}{r^2} dr = \frac{GM_e m_{ship}}{R_e}$$

$$\implies M_{fuel} = m_{ship} \frac{GM_e}{J_{fossil} R_e}$$

Fuels for Lift-Off

 ∞ -Stage Thrusters, in terms of m(r):

$$\begin{split} m(r) &= \Delta m_f + m(r + \Delta) \\ \int_r^{r+\Delta} \frac{GM_e m(r)}{r^2} dr &= -GM_e m(r) \left(\frac{1}{r + \Delta} - \frac{1}{r} \right) \approx \frac{GM_e m(r) \Delta}{r^2} \\ -J\Delta m &= \frac{GM_e m(r) \Delta}{r^2} \implies \frac{dm}{dr} = -\frac{GM_e m(r)}{Jr^2} \\ &\implies \frac{dm}{GM_e m(r)} = -\frac{dr}{Jr^2} \implies m(r) = Ce^{\frac{GM_e}{Jr}} \\ m(\infty) &= C = m_{ship} \\ m_f &= m(R_e) - m_{ship} = m_{ship} \left(e^{\frac{GM_e}{JR_e}} - 1 \right) \end{split}$$

Fuel Comparisons

Sustainable Species

From Darlington '57, bird species grow as $3.29A^{.301}$, with area in mi^2 . For others, assume a constant ratio:

$$birds = 3.29A^{.301}$$

$$mammals = \frac{5490}{9998}birds$$

$$fish = \frac{31300}{9998}birds$$

$$plants = \frac{321212}{9998}birds$$

Results

Population	1	10	100	1000	10000
Ship Area	.31 acres	3.1 acres	31 acres	310 acres	3099 acres
Ship Width	16 m	35 m	75 m	161 m	348 m
Spiral Rotations	2.5	5.4	11.6	25.1	54.0
Ship Mass	1.4e6 kg	1.38e7 kg	1.37e8 kg	1.36e9 kg	1.36e10 kg
Barrels Oil (×1000)	30	292	2898	28881	288354
World Consumption	3.5 hours	1.3 days 13 days	125 days	3.4 years	
Water Volume	540 m ³	5395 m ³	53954 m ³	539545 m ³	5395448 m ³
Metal Material	103 tons	810 tons	7092 tons	66238 tons	640649 tons
Nuclear Fuel	1818 lbs	18176 lbs	181758 lbs	1817584 lbs	18175841 lbs
Bird Species	0	1	1	3	5
Plant Species	11	21	42	85	170

Costs

Population	1	10	100	1000	10000
Metal Meterials (\$mil)	.088	.690	6.04	56.4	546
Nuclear Fuel (\$mil)	.091	.909	9.09	90.9	909
Oil Cost (\$mil)	2.97	29.2	290	2888	28835
Total Cost (\$mil)	3	31	305	3035	30290
Cost per person (\$mil)	3.14	3.08	3.05	3.04	3.03

To calculate

- Add mass of a nuclear power plant
- Calculate gravity and centripital forces

What's Missing

- "unrolled" spaceship on the website
- dynamic barrel piles, for different resources
- building costs and infrastructure
- maintenance workers and their equipment

Contributions

