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Abstract

An approach to solving completely endogenous systems of equations is presented,
using Fourier representations.

1 Introduction

Linear regressions form the basis for much of the analysis of relationships in economics.
While linear regressions produce easily intelligable results, the assumptions of linearity and
exogeneity are generally difficult to support. This paper describes a alternative method of
analyzing the relationships that exist within systems, drawing on techniques from signal
processing.

There are a number of problems with these assumptions:

• Endogeneity is ubiquitious. Most analysis requires the identification of exogenous
variables, but within an integrated system, processes are rarely independent.

• Measurement error is ubiquitous. Measurement error in otherwise exogenous variables
result in a violation of the exogeneity assumption.

• The role of time and space must be constructed by the experimenter.

• Linearity

• Philosophically, as designers of the experiment, we are part of the system, and every-
thing is correlated with our own error terms.

Systems approaches are very different from classical analyses. A system is a collection of
elements, in which each element can influence every other element. This framework presents
a completely different set of behaviors from the classical pysical sciences. As Von Bertalanffy
notes,

Concepts like those of organization, wholeness, directiveness, teleology, and dif-
ferentiation are alien to conventional physics. However, they pop up everywhere
in the biological, behavioral, and social sciences, and are, in fact, indispensable
for dealing with living organisms or social groups. (34)
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Finally, correlation and exogeneity are inappropriate concepts for systems.

The proposed method relies on a signal processing framework which relies heavily on Fourier
analysis. This framework has many advantages:

OLS Compatibility Linear OLS models are natural to describe and to generalize as a
signal processing system.

Explicit Time Time is given a unique role within the framework.1

Endogenous Frequencies Cycles are a tell-tale sign of cybernetic endogeneity, and Fourier
analysis makes these explicit. To the extent to which different variables exhibit the
same frequencies, they are likely to be related by feedback mechanisms.

1.1 Signal Processing Framework

Let y{t} be a erratically sampled variable, or scattered function, with n data points. That
is, for each time tk (for k = 1, 2, . . . , n), the value taken by the variable y{t} is yk. Moreover,
allow y{t} to not be well-defined except at the points {tk}Nk=1 (like a discrete-time function).
Note that each scattered function has a unique corresponding range. Let ~y and ~t denote row
vectors of these corresponding values. Formally, y{t} : {t1, . . . , tn} → {y1, . . . , yn}.
Similarly, let Y {ω} be a scattered Fourier approximation to y{t}. That is, at a each ωk in

a collection of frequencies ωk
M
k=1, Y ωk is defined as a complex value. The row vectors ~Y and

~ω contain these values.

Below, when yi{t}, Yi{ω}, ~ti, and so on, are written with subscripts, this denotes one of
many such scattered functions. i alone will always refer to

√
−1, and as an index only when

written as a subscript or summation variable. x? is the complex conjugate of x, while x′ is
the transpose of x.

The following sections will describe the theory of system prediction from scattered data.
First, the process for translating between scattered functions and scattered Fourier approx-
imations is described below in section 1.2. Then the system model is presented in section
1.3. A simple analytic result of this model, linear system correlation, is presented in section
3. Finally, the first-order delay algorithm is sketched in full in section 7.

1.2 Scattered Fourier Approximation

Throughout this paper, I use the unscaled Fourier transform,

F (ω) =

∫ inf

− inf

f(t)e−ωti

First, a function represented by fourier coefficients ~Y at scattered frequencies ~ω can be
calculated efficiently at scattered points ~t using

~y = <{~Y e~ω′~ti}
1Both as the variable upon which processing happens, and as the variable with respect to which Fourier

transformations are taken.
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When approximating time-domain functions with Fourier coefficients, a unlimited number
of frequency sets can reproduce the values of y{t}– in general any collection of n

2
unique

frequencies can perfectly reproduce n values. It is therefore possible to select frequencies
strategically or randomly, a combination of which will be done below.

Consider a scattered function y{t}, and let ~ω be a set of frequencies that will compose
the Fourier approximation. The problem of Fourier approximation is to minimize the er-
rors:

min
~Y

n∑
i=1

(yi −<{~Y e~ω
′tii})2 =

min
~Y , ~Y ?

(
~y − 1

2

(
~Y e~ω

′~ti + ~Y ?e
~−ω′~ti
))(

~y − 1

2

(
~Y e~ω

′~ti + ~Y ?e
~−ω′~ti
))′

=⇒ 2~ye
~t′~ωi = ~Y e~ω

′~tie
~t′~ωi + ~Y ?e−~ω

′~tie
~t′~ωi

=⇒ ~Y ? =
(

2~ye
~t′~ωi − ~Y e~ω

′~tie
~t′~ωi
)

(e−~ω
′~tie

~t′~ωi)−1

=⇒ 2~ye−
~t′~ωi =

(
2~ye

~t′~ωi − ~Y e~ω
′~tie

~t′~ωi
)

(e
~−ω′~tie

~t′~ωi)−1(e−~ω
′~tie−

~t′~ωi) + ~Y (e~ω
′~tie−

~t′~ωi)

=⇒ 2~y
(
e−

~t′~ωi − e~t′~ωi(e ~−ω
′~tie

~t′~ωi)−1(e−~ω
′~tie−

~t′~ωi)
)

= ~Y
(
e~ω
′~tie−

~t′~ωi − e~ω′~tie~t′~ωi(e−~ω′~tie~t′~ωi)−1(e−~ω′~tie−~t′~ωi)
)

for ω 6= 0.

Given a collection of frequencies ~ω, a scattered function y{t} can be approximated as fol-
lows:

~Y = 2~y
(
e−

~t′~ωi − e~t′~ωi(e−~ω′~tie~t′~ωi)−1(e−~ω′~tie−~t′~ωi)
)(

e~ω
′~tie−

~t′~ωi − e~ω′~tie~t′~ωi(e−~ω′~tie~t′~ωi)−1(e−~ω′~tie−~t′~ωi)
)−1
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Figure 1: Fourier Identification: xx1 and xx2 are two simple functions with errors, each
consisting of two frequencies. ee1 and ee2 are their recompositions, respectively, given all
four frequencies.

If ~ω = ω, a scalar, then the result is simpler. The vector of frequency responses to a vector
of single frequencies (that is, each one considered on its own) is,

~Y = ~ye−i
~t′ ~omega

1.3 The System Regression Model

As a block diagram, the linear regression system could be described as follows:

Further Research I don’t get the single-frequency result when I simplify my full
method– which might mean that there’s a further simplication that can be made to both!

~Y = 2~y
(
e−

~t′ωi − e~t′ωi(e−ω~tie~t′ωi)−1(e−ω~tie−~t′ωi)
)(

eω
~tie−

~t′ωi − eω~tie~t′ωi(e−ω~tie~t′ωi)−1(e−ω~tie−~t′ωi)
)−1

=⇒ ~Y = 2~y
(
e−

~t′ωi − e~t′ωi(eω~tie~t′ωi)?/n
)(

n− eω~tie~t′ωi(eω~tie~t′ωi)?/n
)−1

=⇒ ~Y = 2~y
(
e−

~t′ωi − e~t′ωi(eω~tie~t′ωi)?/n
)(

n− |eω~tie~t′ωi|2/n
)−1
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e(t)
β1

β2

...

βn

x1(t)

x2(t)

...

xn(t)

y(t)

Suppose that there exist a collection of scattered data streams, with real values occuring at
points in time, di = [(ti0, di0), (ti1, di1), . . .]. Each data stream samples a distinct variable,
fi, which may be related to a collection of other variables. In other words, for each fi, there
are a set of indices, σ = {j|j 6= i}. The relationship between these variables is:

fi(t) =
∑
j∈σ

αi

∫ t

− inf

fj(t)e
−t
τ + εi(t)

Basic feedback system:

H(s)

G(s)

x(t) e[n] y(t)

−

r(t)

Mutual feedback system:

H1(s)

G1(s)

H2(s)

G2(s)

O1(s)

O2(s)

I12(s) I21(s)

ỹ1(t)

ỹ2(t)

System Neuron:
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Hi1(s)

Hi2(s)

...

Hin(s)

y1(t)

y2(t)

...

yn(t)

e(t)

yi(t)

ỹi(t)

Note that the error is introduced outside the system. Without this, the behavior of the
system is largely determined by the errors, and unbiased estimation is impossible.

2 Analytical Foundations

Let αik be fourier coefficient ỹi{t}, measured at ωk. Define γik as the corresponding internal
variable coefficient, so

αik = γik + εik

According to the diagram above, in the frequency domain,

γik =
∑
j

Hij(ω, θ)γjk

where H(ω, θ) has a supposed functional form, and θ is the parameter we want to esti-
mate.

This can be rewritten
λk ~γk = H(ω, θ)~γk ∀k

where λ is added to allows different coefficients to be determined by the system up to a
multiplicative constant; here H(ω, θ) is N×K, and ~γk is N×1.

This is an eigenequation, which has N solutions. That is,

γk = ckvl(k)(ωk, θ)

where l(k) maps every element k to a value from 1 to N .

In other words, the K vectors ~αk need to be partition into N collections. The estimation
can proceed within each partition independently.

3 System Correlation Analysis

Discuss where I put the error, derivation of the eigen solution, etc.
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Further Research [put results of problem.tex discussion right above here.] In
general, there is no analytic expression for a given eigenvector... Is there an analytical
solution to the n,nth eigenvector, if all lin. dep?

Further Research Let {xi} be a collection of objects and suppose that a distance
measure, d(x1, x2) is defined for any two objects. Also let there be a method, f({xi}) to
construct a “representative object” from a collection of objects (in general not identitical
to any of the objects in {xi}).
The problem is to find the optimal partitioning of all the objects into n bins. Optimality
is defined as the minimum of some function of the distance measures from each object
to its corresponding bin representative object, e.g.,∑

i

d(xi, f(Pi))
2

where Pi is the collection of objects in the same bin as object i.

This may be solvable more efficiently by some kind of clustering algorithm, or by using
the fact that each object is a complex vector and can be placed as a point in Ck space, but
then I expect the particulars of the distance function (which is not at all like Euclidean
distance) to matter a lot.

The number of ways to partitions of these values can get very large (called the Stirling
numbers of the second kind and denoted

{
n
k

}
).

n\k 2 3 4 5 6 7 8 9
2 1
3 3 1
4 7 6 1
5 15 25 10 1
6 31 90 65 15 1
7 63 301 350 140 21 1
8 127 966 1701 1050 266 28 1
9 255 3025 7770 6951 2646 462 36 1
10 511 9330 34105 42525 22827 5880 750 45
11 1023 28501 145750 246730 179487 63987 11880 1155
12 2047 86526 611501 1379400 1323652 627396 159027 22275
13 4095 261625 2532530 7508501 9321312 5715424 1899612 359502
14 8191 788970 10391745 40075035 63436373 49329280 20912320 5135130
15 16383 2375101 42355950 210766920 420693273 408741333 216627840 67128490

Finding local optima of the partitioning problem is easy. However, finding the globally
optimal partitioning is a difficult problem. The solution taken here is simulated annealing,
which can be thought of as a random tunneling algorithm. At any point in the algorithm,
there is a “current state”, a partitioning. In each loop, random changes are proposed, and
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Further Research It might also be fruitful to represent the complex numbers as
ρ∠θ, where ρ = ln(abs(c)) and θ = angle(c), when solving for the components. Then
both components of a complex number are add under multiplication. So the equation,

a = b ∗ c =⇒ (αa + βai) = (αb + βbi)(αc + βci) = (αbαc − βbβc) + (αbβc + αcβb)

becomes
α = β ∗ γ =⇒ ρa∠θa = (ρb∠θb)(ρc∠θc) = (ρb + ρc)∠(θb + θc)

the alternative local optimum is identified. If that local optimum is better than the current
state, it is taken. Sometimes, even if it isn’t better, it might be taken– this is tunneling– as
a potential path toward a better optimum.

4 Functional Forms for Hij(ω, θ)

I have been exploring two functional forms for H(ω, θ):

• Hij(ω, θ) = Hij (that is, a constant). This is frequency correlation analysis, where
H = r∠φ. r represents the magnitude of correlation; φ is the phase shift.

• Hij(ω) = r
−τ+iω . This is a first-order delay. An infinite collection of first-order delays

with certain values of τ can combine into a proper delay. With enough variables,
first-order delays can represent any basic system dynamical system.

To recoverH(ω, θ), note that for any matrix with eigen vectors (~v1, ~v2, . . . , ~vn) = V , H(ω, θ) =
V Λ(ω, θ)V −1.

5 Estimating γk

Consider Hij(ω, θ) = Hij.

We minimize the least squares error to find the underlying

εik = αik − ckvi =⇒ L =
∑
i

∑
k

(αik − ckvi) (α?ik − c?kvi)

We define ck = ak + ibk and vi = xi + iyi, and solve. The result is,

~v?
′
(∑

k ~αk ~αk
?′
)
~v

~v′~v?
~v =

(∑
k

~αk ~αk
?′

)
~v

This is another eigenequation. The left coefficient of ~v is the Rayleigh quotient, equal to the

eigenvalue of
(∑

k ~αk ~αk
?′
)

. Furthermore, for small errors, the matrix
(∑

k ~αk ~αk
?′
)

will be

nearly rank 1, and have only one eigensolution that is not near 0.
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Further Research Is there a closed-form solution to the last or largest eigenvalue
of an eigenequation?

To my knowledge, there is no closed-form expression for this largest eigensolution. However,
it can be solved easily, numerically.

Let that eigenvector be ~v. Then ck = ~αk
′~v

~v′~v?
.

Hii =
∑
k

(∑
l

VilΛlk

)
(V −1)ki =

∑
k

(Vikλk)(V
−1)ki =

∑
k

(V −1
′
)ikVikλk = (V −1

′ × V )~λ

To get all solutions, set Hii = 1 for a minimum number of values i to get solutions, and
Hjj = 0∀j 6= i:

~λ = (V −1
′ × V )−1(1, 0, 0, . . . , 0)′

The result needs rescaling, but reliably works.

6 Bias and Consistency

We have,
γ̂ = Ĥγ̂

α = γ̂ + ε̂

These can be rearranged to give

Ĥα = Hα + (Ĥ − In)ε̂− (H − In)ε =⇒
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Ĥ = H +
(

(Ĥ − In)ε̂α′ − (H − In)εα′
)

(αα′)−1

The second form is conducive to proving consistency. So, Ĥ is unbiased and consistent if
E(Ĥ − In)ε̂ = (H − In)ε. Or, equivalently, if

Eε̂(γ̂ + ε̂)′ = Eε(γ + ε)′

By the model, Eεγ′ = 0, and if it seems plausible that

Eε̂ε̂′ = Eεε′

(that is, that σε can be consistently estimated).

So, the remaining criteria is that

E(Ĥ − In)ε̂γ̂ = 0

Rather than selecting λ arbitrarily as above, we can select λ to minimize this value, thereby
minimizing the bias.

7 Sketch of First-Order Delay Algorithm

Let there be a collection of n endogenous scattered variables, yi{t}, for i ∈ I = 1, . . . , n. For
each variable, define a Fourier approximation, Yi{ω}. Initially, this approximation may be
empty, e.g., ω = {}. Also, for each variable

< {yi{t}, Yi{ω}, {αij, τij}j∈Ji}ni=1 >

Initially, ωi = {}, m = 0.

7.1 Phase 1: Fourier Improvements

Is bestspec sensible? The idea is that I can approximate a function many
ways: I can specdata with all the omegas, or I can just specdata with some, take out those
elements, and specdata with others. What’s sensible?

In comfour, I can specdata each with common + kk new, and just strip out the kk best.
Then I’ll have potentially many solutions. So start eliminating the weakest.

2

Require: J ⊂ I, N > 0
pool← {: ωi : random({−π . . . π}, 2N) : ωJ1 : · · · : ωJJ :}
ω ← random(pool, N)

2Notation: {·} denotes a (unordered) set, [·] denotes a (row) vector, and < · > denotes a tuple. Within
any of these, : x : denotes all of the elements within x, that is, x1, x2, . . . , xn. x[i] is the ith element of x,
but xt refers to the entireity of a scattered function. xi denotes the entire variable x associated with input i.
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ω̂ ← [ ]
α̂← [ ]
ŷ{t} ← {0}∀t
for i = 1 to N do
α← fourappx(y{t} − ŷ{t}, ω)
k ← index of largest element of |α|
ω̂ ← [: ω̂ : ω[k]]
α̂← [: α̂ : α[k]]
ŷ{t} ← ŷ{t}+ <{α[k]eω[k]t}
ω[k]← random(pool)

end for

1. Randomly select a few other variables, J ⊂ I, and take the union of their ω’s: ω =
∪j∈Jωj. Let ω̂ and α̂ denote the progressive Fourier appoximation, initially both empty
sets. Define ŷ{t}, the approximation, at the same values of t as y{t}; initial ŷ{t} is
everywhere 0.

2. Produce a scattered Fourier approximation of y{t} − ŷ{t}, using ω, producing the
corresponding coefficient set α.

3. Identify the largest component α, αk at ωk.

4. Add αk and ωk to α̂ and ω̂ respectively. Replace ωk in ω with a new (random) frequency.

5. Add the contribution of αk to ŷ{t}. That is, let ŷ{t} = ...
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Figure 2: FOD Algorithm Stages: A rough sketch of the algorithm.
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Figure 3: Fourier Approximations: Blue shows an over-saturated approximation; note that
it produces oscillations not supported by the data. The cyan curve includes only the largest
19 components.
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