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Information theory has much to contribute to the study of cellular automata. This paper considers
several consequences for “binary conformist grids”, cellular automata networks where each node
aims to have a state similar to its neighbors. These results have consequences for the movement of
information and memes through social networks.

A cellular automata consists of a network of nodes, each of which has a state which changes in
time. The state evolves according to a state machine, informed by both values within the node’s
neighborhood.

Throughout this paper, I will use the following notation. The random variable describing the state
of a given node at a given point in time is X or X0. The state of the node’s N neighbors is Xn.
Often, only number of neighbors of value 1 will matter, and this is denoted by Xn. The state of
the remainder of the graph with the exception of node i is X−i and the remainder without node i
or its neighbors is X−ni−i. The states of the same nodes at the next moment in time is Y· (e.g., Y ,
Y n, etc.).

Figure 1: A) Regions of a conformist grid, relative to a node i. Red represents the neighborhood,
green represents the remaining grid. B) Markov chain representation of the evolution of states for
the regions in (A).

The state machines studied in this paper are non-deterministic, where the evolution of a node’s
state is a draw from the probability distribution P (Y |Xn, X).

In a binary conformist grid, the more values within a node’s neighborhood which are 1, the more
likely the node’s subsequent state will be 1. This function, P (Y = 1|Xn, X) = g(Xn, X) can take
several interesting forms. Below I consider example cases where q(·) is (1) linear or (2) follows the
portion of 1’s with limits, and where the significance of neighbors are weighted equally or not.
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1 Omni-Conformist Grids

Consider a simple state machine, corresponding to a omni-conformist network of size 1. The
probability of maintaining the state over time 1− p.

Figure 2: Omni-Conformist Networks, of size 1, 2, and 4.

This can be represented as a Markov chain, with

P =

(
1− p p
p 1− p

)
µ̄ =

(
1/2 1/2

)

Such that µ̄ = µ̄P . For this network,

H(X ) = −
∑
i,j

µ̄iPij logPij

= H(p) = −p log(p)− (1− p) log(1− p)

Now, consider an omni-conformist network of size N . There are 2N states in the composite state
machine, each characterized by the set of node states represented by N binary digits. The general
form for the transition matrix is,

Pij = (1− ḡ(1(i)))n−1(j)ḡ(1(i))1(j)

where ḡ(k) is the probability that any given bit will be 1 after observing k 1’s, and 1(j) is the
number of 1’s in state j. In my examples, I consider two forms for ḡ(k):

ḡ1(k) = p+ (1− 2p)
k

n

ḡ2(k) =


p if k = 0

1− p if k = n
k
n else

Elsewhere in this paper, I generally use g(xn) = ḡ(1(xn)), where now 1(·) denotes the number of
1’s in xn.
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Let the steady-state be denoted µ̄N . It is solveable, but has no closed-form solution for an arbitrary
number of nodes, under either of my example forms for ḡ.

The transition from state i has an entropy H(B(n, ḡ(i))) = nH(ḡ(i)). That is, it has the entropy
of a draw from a Binomial distribution, which has n times the entropy of a draw from a Bernoulli
distribution. So,

H(X ) = n

N+1∑
i=1

µ̄iH(ḡ(i− 1))

Since each node only observes the portion of nodes in each state, the total number of effective states
can be reduced to n+ 1. In this case, the general form of the transition matrix is

Pij =

(
n

j − 1

)
(1− ḡ(i))n−j+1ḡ(i)j−1

If only the “effective state” is observed– that is, only the count of nodes in each state– the entropy
rate decreases significantly. In particular, the relationship between the entropy rates is,

H̄(X ) = H(X )−
∑
i

µ̄i log

(
n

i− 1

)

See figure 3 for a collection of the PDFs.

1.1 Shapes of the Equilibrium

The grid-wide distribution is greatly affected by the impact of minority values. The graphs in figure
3 use ḡ2(k) above. However, when ḡ1(k) is used, the resulting equilibria are very different.

While ḡ2(k) maintains the portion of values of a particular minority, ḡ1(k) increases them slightly.

The effects are clearly visible for an N = 5 network. Here, the difference between ḡ1(k) and ḡ2(k)
is only for k = 1 and k = 4. In the graph below, I replace these values with a value p which varies
from .25 to .35, and graph the resulting steady-state, µ̄.
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Figure 3: Examples, with g(i) defined as above. Top: PDFs for equilibrium states, by node and
in aggregate. Next: PDF for 10 node equilibrium state. Next: PDFs for all equilibrium states in
the aggregate model of between 1 and 100 nodes. The PDFs are rescaled to have an approximate
area of 1, as though they are continuous PDFs for display purposes. Bottom: Entropy rates for
observing the complete state or observing the aggregate state.

4



2 Conformist Grids

Within a conformist grid, each node has a collection of neighbors. In each time step, each node
acts like it is part of an omni-conformist network composed of itself and its neighbors.

The grid can be concieved as a Markov chain in space-time.

H(Xi|X−i) = H(Xi|Xni)

2.1 Weighted Neighbors

The equations below use a general function g(xn), as above. This can be modified to allow nodes
to apply different weights to different members of its neighborhood. For example, the weighting
scheme might count the value of the node itself with higher weight than any of its neighbors, or it
might count neighbors further from it less heavily.

The only change needed is in 1(·). Previously, 1 was just a function of the number of 1’s. Now, we
define it as,

1(x1, . . . , xK) =

∑
k wkxk∑
k wk

2.2 Equilibrium Properties

For an torus grid of size > N2, without edge effects, the equilibrium distribution of states within
a region consisting of a node and its neighbors is identical to the omni-conformist network of size
N + 1.

Proof: At a given time, let the distribution of every node and its associated neighbors be µ̄N+1.

According to the time evolution, for each possible state i, each node draws from a Bernoulli distri-
bution with p = ḡ(i− 1). Given the distribution of states around them, they draw independently,
so the resulting distribution of states is µ̄N+1, so this is the steady-state.
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2.3 Adjacent Information

Under equilibrium,

H(Xn|X) = H(X,Xn)−H(X)

= H(µ̄N+1)− 1

H(X,X1, Xn−1) = H(X,X1) +H(Xn−1|X,X1)

=⇒ H(X,X1) = H(X,X1, Xn−1)−H(Xn−1|X,X1)

=⇒ H(X,X1) = H(µ̄N+1)−H(µ̄N+1|X,X1)

H(X,X1) = H(X) +H(X1|X)

=⇒ H(X1|X) = H(X,X1)−H(X)

=⇒ H(X1|X) = H(µ̄N+1)−H(µ̄N+1|X,X1)− 1

I(X1, X) = H(X1)−H(X1|X)

=⇒ I(X1, X) = 1−
[
H(µ̄N+1)−H(µ̄N+1|X,X1)− 1

]
=⇒ I(X1, X) = 2−H(µ̄N+1) +H(µ̄N+1|X,X1)

Let Ỹ n be the fictional state of the neighborhood, resulting from an omni-conformist evolution of
X,Xn.

H(Ỹ n|Y,X) = H(Y, Ỹ n|Y,X) = H((µ̄N+1|X)P |Y )

H(Y, Ỹ n|X) = H(Y |X) +H(Ỹ n|Y,X)

=⇒ H(Y |X) = H(Y, Ỹ n|X)−H(Ỹ n|Y,X)

=⇒ H(Y |X) = H((µ̄N+1|X)P )−H((µ̄N+1|X)P |Y )

=⇒ H(Y |X) = I((µ̄N+1|X)P ;Y )

3 Non-Equilibrium Properties

In non-equilibrium settings, the probability mass of Xn is not well defined, so the question becomes,
if we know the neighborhood of a node, how thoroughly does that constrain the node. If the value
of the node and its neighborhood are known at time t, then the entropy increases at time t + 1
according to

H(Y |X = x,Xn = xn) = H(g(x, xn))
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Given both x and xn, y is a draw from the g(·) distribution.

The key non-equilibrium factor is H(Y |Xn = xn).

Assuming that we have no information on X, let P (X = 1) = 1
2 . Then,

P (Y = y|Xn = xn) =
1

2
P (Y = y|X = 0, Xn = xn) +

1

2
P (Y = y|X = 1, Xn = xn)

P (Y = 1|Xn = xn) =
1

2
[g(0, xn) + g(1, xn)]

=
1

2
[ḡ(1(xn)) + ḡ(1(xn) + 1)]

P (Y = 0|Xn = xn) =
1

2
[1− g(0, xn) + 1− g(1, xn)]

The entropy introduced by time then is,

H(Y |Xn = xn) = −
∑

y={0,1}

p(y|xn) log p(y|xn)

= −1

2
[1− g(0, xn) + 1− g(1, xn)] log

1

2
[1− g(0, xn) + 1− g(1, xn)]

− 1

2
[g(0, xn) + g(1, xn)] log

1

2
[g(0, xn) + g(1, xn)]

The final entropy is

H(Y |Xn) =
∑

xn∈Xn

p(xn)H(Y |Xn = xn)

4 Conformist Grid Channels

Communication can occur over the grids, by designating sets of nodes as transmitters and recievers.
Depending on the persepective and grid setup, this can be concieved of as a simple channel, a relay
channel, an interference channel, a 2-way (feedback) channel, or a multiple access channel.

4.1 Two-Cell Grids

Consider a grid composed of two cells, a transmitter and a receiver. The receiver recieves the
transmission one time step after it is sent. Let the value at the reciever at the time of transmission
be X, and the received transmission (the value at the same cell one time step later) be Y . The
value being trasmitted is T .
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Figure 4: The conformist grid concieved as (A) a relay channel, with multiple recievers to capture
the relayed message, (B) an interference channel, with independent transmitters, and (C) the
simplest multiple-access channel, the neighbor channel.

Figure 5: The two channel grid. The entropy depends on whether the value transmitted is the
same as the previous value in cell X.

What is the channel capacity, if the channel has memory (it knows the previous value, X)? Let
that q = P (T = 1).

C = max
p(T )

I(T, Y |X) = H(T )−H(T |Y,X)

= H(q)−
∑

x∈{0,1}

p(X = x)H(T |Y,X = x)

Since H(T |Y,X = 0) = H(T |Y,X = 1), without loss of generality, I will let X = 0.
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P (T = 0, Y = 0|X = 0) = (1− p)(1− q)

P (T = 1, Y = 0|X = 0) =
1− q

2
P (T = 0, Y = 1|X = 0) = qp

P (T = 1, Y = 1|X = 0) =
q

2

P (T = 0|Y = 0, X = 0) =
(1− p)(1− q)

(1− p)(1− q) + 1−q
2

P (T = 1|Y = 0, X = 0) =
1−q
2

(1− p)(1− q) + 1−q
2

P (T = 0|Y = 1, X = 0) =
qp

qp+ q
2

P (T = 1|Y = 1, X = 0) =
q
2

qp+ q
2

Based on these, we can calculate H(T |Y,X = 0):

H(T |Y,X = 0) = −
∑

t∈{0,1}

∑
y∈{0,1}

p(t, y|0) log p(t|y, 0)

4.2 Full Grid Channels

The simplest communication system on the conformist grid is a multiple-access channel formed by
the cells neighbors. In general, the capacity region of this network is the closure of the convex hull
of rate vectors satisfying ∑

i∈S
Ri ≤ I(X(S);Y |X(Sc))∀S ⊆ {1, 2, . . . , N}

with X(S) = {Xi : i ∈ S}, for some distribution
∏N

i=1 pi(xi) (Cover and Thomas 2006, Thm 15.3.6).
The constraining equation in this case is

N∑
i=1

Ri ≤ I(X1, . . . , XN ;Y )

We can maximize the information with a P (Xn = 0) = 1 and P (Xn 6= 0) = 0. Let p = ḡ(0) and
q = ḡ(1).
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P (Y = 0|Xn = 0) =
1

2
(p+ q)

P (Y = 1|Xn = 0) = 1− 1

2
(p+ q)

H(Y |Xn = 0) = H(
p+ q

2
)

I(Xn;Y ) = H(Y )−H(Y |Xn)

= 1−H(
p+ q

2
)

The same capacity applies to a channel formed by a node which transmits to a receiver collectively
formed by its neighbors. This is because, I(Y n, X) = I(Xn, Y ).

This provides an upper bound on the mutual information between a node and its neighbor. The
mutual information between two nodes separated by a larger distance, K, is a succession of “infor-
mation losses” like this. So, the probability that information will be lost between a node and its
neighbor is

P1 = 1− p+ q

2

The chance that information after K − 1 steps will be lost on the Kth step is

PK = 1− PK−1
p+ q

2

And the total loss is,

P =
K∏
i=1

Pi

The mutual information then is,

I(ZK , X) = H(ZK)−H(ZK |X)

= 1−H(P )
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