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1. Abstract:

Spatially distributed fishery data remains rare, and the geographical ranges of fish over

the course of their lifespans remain unknown for many species. This paper combines
port-disaggregated weekly anchoveta catch data with spatio-temporal phytoplankton and
zooplankton measurements to estimate the range of Peru’s anchoveta stock. A hidden
Markov model is used to estimate weekly stocks between 1993 and 1999. Stocks are found
to correlate with zooplankton heterogeneously over space and time, with the correlations
in the northern region being greatest until 2 years before landing, followed by a uniform
dependence across the coast between 40 and 100 weeks before landing.

2. Literature review:

An extensive body of work on plankton and anchoveta dynamics was collected in the books
The Peruvian Anchoveta and Its Upwelling Ecosystem: Three Decades of Change and The
Peruvian Upwelling Ecosystem: Dynamics and Interactions. Multiple approaches were used
for estimating anchoveta stock. The first approach involved collecting information on each
step of catch-landing-processing to estimate under-reporting (Castillo et al., 1987). Other
studies took a more standard stock-assessment approach with spawning, stock, and egg
production data (Pauly et al., 1987), growth models (Palomares et al., 1987) and length-
weight catch composition (Tsukayama et al.,, 1987). The papers collected in these volumes
also studied plankton seasonal variation (Carrasco et al., 1989), the physical dynamics of
the region (Brainard et al.,, 1987; Bakun, 1987), and bioeconomic modeling (Aguero, 1987).

Scientists’ understanding of plankton-fish dynamics has evolved over time. Originally,
ecological modeling focused on modeling the physical system, including hydrodynamics
such as temperature and nutrients (Denman, 1976; Weber et al., 1986). It was found that
such hydrophysical features were relevant only on a macro scale (dozens of kilometers

or more) and on a micro scale (100 meters or less); distribution on an intermediate

scale was uncorrelated to hydrodynamics. To model these distributions, researchers
looked for patterns based on predator-prey distribution and developed phytoplankton-
zooplankton interaction models (Scheffer 1991, Malchow 1994). Several papers introduced
local chaos based on seasonal oscillation of parameters (Doveri et al. 1993, Scheffer et al.
1997), multiple interacting plankton species (Ascioti et al., 1993), or diffusion of nutrient
gradients (Pascual, 1993). Another branch of ecological modeling took off in the late 1990s:
Instead of trying to model physical systems, papers applied statistical approaches (Punt
and Hilborn, 1997, Chen et al., 2003). Other studies have incorporated logistic growth
models (Pyo and Lee, 2003). More recently, focus has shifted to hierarchical Bayesian
techniques, re-integrating physical assumptions to develop multilevel priors. For example,
Hiruki-Raring used priors such as krill density and sea ice, krill density and dive depth
intensity, and dive duration intensity in her paper on fur seal foraging and pup growth
related to sea ice and prey abundance (Hiruki-Raring et al., 2009). When it is not possible



to calculate the joint posterior distribution, Markov chain Monte Carlo simulations are used
(Mantyniemi, 2001).

Our analysis builds on the statistical and Bayesian approaches. We apply a hidden Markov
framework, informed by a logistic growth model. We separately apply a kriging analysis
that steps through time to estimate plankton concentrations throughout our region.

3. Data:

This analysis draws on two key data sets. Plankton data comes from NOAA’s World Ocean
Plankton Database and was collected by Instituto del Mar del Peru (IMARPE). IMARPE was
created in 1964 and started its plankton collection project the same year with the goal of
better understanding the impacts of ENSO on the marine resources. IMARPE used a Hensen
net (300 pm) to collect zooplankton and a 75 um surface tow net for phytoplankton. The
survey spanned the Peruvian coast and included all seasons between 1972 and 2005. It
collected 16,099 data points for each of phytoplankton and zooplankton (ml/m?3), along
with the latitude and longitude coordinates.
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Plankton haul: IMARPE, 1972-2005. Distribution of Plankton casts by month, 1990-2000.

The second data set comes from the International Research Institute (IRI) Eastern Pacific
Pelagic Fisheries project and was collected by the Fishmeal Exporters Organization (FEO).
It contains weekly anchoveta landings in tons in three ports (Paita, Chimbote, and Pisco,
Peru) as well as total anchoveta landings for Peru for the years 1993-99.

In the analysis, the entire range of plankton data is used to produce a kriging variogram.
The 6,012 plankton casts taken before 1990 are used to construct a backdrop of plankton
concentrations, while the 7,926 casts between 1990 and 2000 provide the variation for
identifying plankton’s effects on fish populations. See supplemental material A for a
discussion of the selection of this data.
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4. Methodology:

4.1 Cleaning the plankton data:

The phytoplankton and zooplankton data cover a wide range of values. The boxplot below
shows only the values above 0, on a log scale (59 phytoplankton and 89 zooplankton zero
values are excluded from the boxplot, but included in the analyzed data). We removed four
data values recorded for Feb. 29 of non-leap years and the zooplankton outlier (a value of
855 ml/m3, compared to the next highest value at 66 ml/m3).
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To handle the long tailed distribution of values, the plankton data is analyzed in ranks.
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4.2 Gridding the plankton data:

Kriging was used to fill in the spatial data holes for phytoplankton and zooplankton.
Separate variograms were estimated for each of the plankton types and each month in the
data set. A spherical model fit was constructed for each month, and the median nugget and
sill parameters were used to construct a single variogram model to be applied to all time.
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The below graphs show the variogram monthly semivariance data points, with our model
in blue, the mean semivariances in red and a locfit line in green.
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The resulting kriging graphs provide good spatial coverage and temperal
variability. Two sample weeks are shown below for phytoplankton and
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4.3 Modeling fish stocks with a hidden Markov model:

Next a hidden Markov model and expectation-maximization are used to estimate anchoveta
stocks based on port landings.

In the diagram above, the observed catch (C,) is informed both by a hidden stock variable
(St) and by information denoting which of the ports are active (P;). P;.is a binary variable
for each of the three ports for which data is available, and P4, is a binary variable for the
remaining undisaggregated ports (which are treated as one). P;;is 1 if the port reported

a catch greater than 0. For the undisaggregated ports, (P4.) is 1 if the country-wide total
catch minus the sum of the available ports is greater than 0. The time periods when P, is

0 are marked in red in the catch figure above (labeled Weekly catch data for ports Pisco,
Chimbote, Paita, and total.)

We assume that growth follows a logistic model,

S
St+1:St—|-TSt (1—%)—6}4—&
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for some unknown parameters, Sy, o, and f.

We also assume that the catch in each time period is drawn from a probability distribution
which scales linearly with the effective stock. The effective stock is

ng = S‘;} ":f'-‘,;PL_;,
i

where v; is the factional influence of each port. Let 2ivi=1 Therefore, we assume that
there exists a probability distribution function f such that



P(CIS) ~ f(§)

This assumption is valid if the effort did not significantly change over the time period and if
there are no density-dependent effects in anchoveta schooling behavior.

The aim of the estimation-maximization procedure is to simultaneously estimate this
function f and determine the model parameter estimates which produce a maximum
likelihood under it:

C
max

> log f( t )
SOvavﬂv{f}/i} ¢ St(SO’ Of, /6) (Zz ,YiP’i,t)

The specific steps are enumerated in supplemental material section B.

The predicted stock is shown below.
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From the total stock, we can also estimate the stock growth (G,
= St+1 - S¢ + C¢), which we will correlate with plankton across



Changes in Stocks

4e+05 6e+05
1 l

2e+05
|

Catches and Recruitment

0e+00
l

| | | | | | I
1993 1994 1995 1996 1997 1998 1999

Year
space:
4.4 Average correlations

Anchoveta eat zooplankton, so we expect to see a correlation between anchoveta growth
and average levels of plankton. That correlation could be delayed, based on the maturation
and spawning time of the anchoveta. The average plankton concentrations are shown
below to give an indication of their variability.

Average Phytoplankton and Zooplankton Concentrations
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We correlate the predicted anchoveta stock growth against measured average plankton



concentrations, delayed from 0 to 200 weeks. We also include some leading weeks, as a
falsification test.
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The results are promising. Phytoplankton abundance in the preceding two to four years
correlates negatively with anchoveta stock growth. It is possible that this reflects the
growth of competitors. Zooplankton abundance correlates positively with anchoveta
growth, with 95% statistical significance in the preceding 33 to 128 weeks.

4.5 Spatial correlation

Finally, we perform the delayed correlation for each grid cell. Where the 95% limits
include 0, the correlation is set to 0. Elsewhere, we sum the absolute value of the
correlation for both phytoplankton and zooplankton. This gives an indication of what
regions anchoveta, and their food chain, draw upon for various states stages of their lives.
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Qualitatively, the following results are suggested:
In the period 2-3 years before spawning, very few regions show importance.
Around 1.5-2 years before spawning, the northern region is important, and regions
far from the shore.
Around 0.5-1 year before spawning, the region closer to the shore becomes
important, and the stock more integrated across the entire region.

Conclusions:

It was found that stock growth correlates positively with the abundance of zooplankton in
the period from 33 to 128 weeks prior (95% statistical significance). The correlation varies
considerably by region.

These interesting results suggest a need for further research to better understand the
dynamics of the plankton-Anchoveta relationship. By improving our kriging model, we
could improve plankton estimates, which would be useful in confirming or modifying

the correlations found here. This could be accomplished by adding predictors to the
variograms in our kriging model, such as latitude, distance from shore, and meridional
Atmospheric Circulation Index, which has been associated elsewhere with increases

in Anchoveta population (FAO, 2001). Closer study of the correlations between
phytoplankton and zooplankton could also help to shed light on the reasons for the time-
lagged negative correlation between phytoplankton and anchoveta. Finally, using a hidden
Markov-Monte Carlo model might allow the results here to be compared more directly with
findings from Bayesian models in the existing literature.
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Spatial fisheries supplemental material

A. Data Selection

We considered a variety of anchoveta landing series for Peru to analyze in conjunction with the
plankton data. FAO provides yearly production data since 1950, while IRI’'s EFFP contains both
monthly catches from 1953 to 1987 and weekly catches from 1993 to 1999. All sources provide
the catch in tonnes. The graph below displays these three sources, scaled to daily values.
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Between these, the weekly data set seems superior for three reasons. (1) It provides the most
data points within the time period for which plankton data is available (330 as compared to 34
(yearly) and 322 (monthly)). (2) It corresponds very well to the yearly totals, while the aggregate
monthly data diverges considerably after 1976 (see figure below). (3) The weekly data is
available separately at three ports, Pisco, Chimbote, and Paita. These ports account for 65% of
the Peru anchoveta catch during this time period.
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The monthly data is available disaggregated into length classes (monthly tonnes by length, 4 -
20 cm). Incorporating this length data as a proxy for age distributions could be used to improve
our lifecycle results.

B. Expectation Maximization Procedure

As usual, the EM algorithm alternates between estimating a probability distribution and
identifying the maximum likelihood parameters under it. However, the complicated functional
forms involved make identifying the maximum likelihood parameters difficult. Instead, a
randomized algorithm is used.

The estimation maximization procedure used the following steps:
1. Assume initial values for S,, a, 3, and {yi}. The procedure is very sensitive to this initial
set of values. The values used are listed in the table below.
2. Model the stock growth under these parameters, producing a sequence {SJ}.

Estimation
3. Estimate the probability distribution for catch given effective stock,

(o
M)
Pt e T Lt as a kernel-estimated empirical distribution.

4. Determine the summed log-likelihood of the sequence of observed catch and estimated
stocks, under the estimated distribution.



Maximization

5. Construct a randomly adjusted new set of parameters, slightly changed from the most

optimal set identified.
6. Model the growth under these parameters.

N

Calculate the summed log-likelihood under the existing empirical distribution.
8. If the summed log-likelhood for the new parameters is greater than the previous most-

optimal parameter set, use these new parameters as the new most-optimal set and

return to step 3.

9. Otherwise, return to step 5.

Below are the initial parameters used, a rationale for selecting them, and the final parameters
determined by the EM algorithm. Rather than reporting o and 3, we show the underlying logistic

parameters, R (the growth rate) and K (the carrying capacity).

Initial Rationale Final
So 16 790 000 28 x maximum catch 22 790 000
R=a-1 .01 arbitrary 0.007745
K=-(a-1)/p 1 679 000 000 100 x Sy 10 400 000 000
v1 (Pisco) 0.4168 max(P4 t)/sum maxes 0.2127
v2 (Chimbote) 0.1045 max(Pzt)/sum maxes 0.1395
v3 (Paita) 0.3013 max(P3t)/sum maxes 0.2692
Y4 (remaining) 0.1775 max(P4t)/sum maxes 0.3785

The estimated distribution for catch/effective stock is below.
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C. Some missing patterns

We failed to find some patterns that might be expected.

log of eigenvalue

1080 4

10475

1047.0 1

1065 4

10%6.0 4

The correlation analysis of plankton with catch shows no pattern and no extended
regions of statistically significant correlation. This suggests that fishers do not use

plankton as an effective indicator for regions to fish. Based on our paper’s results, the

low correlation of plankton with current fish stocks suggests that this is reasonable.
Catches are not well-predicted by NINO3 or any combinations of it delayed. SSA
applied to yearly catches identified no cycles of the relevant length:
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An AIC model selection from of two years of delayed monthly NINO3

values, linearly predicting monthly catches, identified eight delays which combined
produce a R2 of only .056. The graph below shows the model parameter



estimates for all delays, and identifies (dots) the delays selected by the AIC
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