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Introduction

Understanding how information flows through spatially distributed
media.

Studying the “conformist” grid: how do people make decisions?

Basic Setup

Cellular automata (CA), on a grid, in discrete time

Non-deterministic state machines

At each time, each node observes its neighbors, and draws from a
Bernoulli distribution, B(p).

0 < p < 1, p increases with the number of neighbors of value 1, and
is symmetric (if all values are flipped, p′ = 1− p).
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Notation

Notation
X , X0: value of given node at given time

X n collection of neighbors of node X
Xi (i > 0) the value of neighbor of X

Xn the number of neighbors of X with value 1
X−i collection of values excluding value i
Y : value of given node at next time
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Omni-Conformist Network

Markov Chains Determine steady-state (µ = µP) and entropy rate.
Size P H(X )

1 P =

(
1− p p
p 1− p

)
H(p)

N Pij = (1− ḡ(1(i)))n−1(j)ḡ(1(i))1(j) n
∑N+1

i=1 µ̄iH(ḡ(i − 1))

N Pij =
( N
j−1
)
(1− g(i))N−j+1g(i)j−1 H(X )−

∑
i µ̄

N+1
i=1 log

( N
i−1
)
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Some Simulations
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Minority Effects

g(i) = max(p,min( i
n , 1− p))

g(i) = p + (1− 2p) i
n
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Entropy Rates

Omni-Network: Observe all vs. observe portion

Extension to N = 5 grid
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Conformist Grids

Like a Markov Chain in space-time: H(X |X−) = H(X |X n)

Assume a torus (no edge effects)

Equilibrium Properties

Non-Equilibrium Properties

Conformist Grid Channels

James A. Rising (Columbia SIPA) Entropy on Grids May 2, 2012 8 / 13



Equilibrium Properties

Distribution within (X ,X n) ∼ µN+1

Entropy of neighborhood, H(Xn|X ) = H(µN+1)− 1

Entropy of neighbor, H(X1|X ) = H(µN+1)− H(µN+1|X ,X1)− 1

Adjacent mutual information,
I (X1,X ) = 2− H(µN+1) + H(µN+1|X ,X1)

Entropy from time evolution: H(Y |X ) = I ((µN+1|X )P;Y )
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Non-Equilibrium Properties

Entropy from time evolution: H(Y |X = x ,X n = xn) = H(g(x , xn))

P(Y = y |X n = xn) =
∑

x∈{0,1} p(x)P(Y = y |X = x ,X n = xn)

P(Y = 1|X n = xn) = 1
2 [g(0, xn) + g(1, xn)]

P(Y = 0|X n = xn) = 1
2 [1− g(0, xn) + 1− g(1, xn)]

H(Y |X n = xn) = −
∑

y={0,1} p(y |xn) log p(y |xn)
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Conformist Grid Channels

A simple channel, a relay channel, an interference channel, a 2-way
(feedback) channel, a multiple access channel.
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Neighbor Channel

Consider a reciever surrounded by transmitters.
According to network information theory, the limiting equation is

N∑
i=1

Ri ≤ I (X1, . . . ,XN ;Y )

The information is maximized at

I (Xn;Y ) = 1− H(
p + q

2
)

with p = ḡ(0) and q = ḡ(1).
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Inverse Neighbor Channel

Neighbor channel information is upper bound between a node and its
neighbor.

For a sender and receiver K grid cells away,

P1 = 1− p+q
2

PK = 1− PK−1
p+q
2

P =
∏K

i=1 Pi

I (ZK ;X ) = 1− H(P)
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